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1 INTRODUCTION 

Industrial investigation of material structure and composition is an integral part of 

the manufacturing design flow. It is possible to evaluate these properties by both destruc­

tive and non-destructive means. Non-destructive evaluation of materials is attractive for 

obvious reasons and x-ray NDE (Non-Destructive Evaluation) is a well established disci­

pline. X-ray images of materials (represented and stored in the form of radiographs) are 

capable of providing valuable information regarding the presence of material defects such 

as, voids, cracks and inclusions. A common medium used to store an x-ray image is the 

film or radiograph. This is an analog representation of the x-ray image, produced by the 

photographic effect. This grayscale representation of the material under investigation, 

when analyzed, is able to provide the necessary information regarding the presence of 

defects. 

The human brain has the ability to recognize patterns and differentiate minute vari­

ations in the grayscales of the radiograph, so long as these variations are within a partic­

ular range. In order to overcome this limitation of the human visual mechanism and to 

facilitate the objectives of storage, processing and transmission, it is necessary to trans­

form this representation of the x-ray image as a radiograph, into a digital form. This 

also helps to extract quantitative physical parameters from a digitized image, which is 

not possible with an analog image which is only good at providing a qualitative overview 

of an image. 

This process of digitization transforms the grayscale analog radiographic image to a 

digital form, by first dividing the analog radiograph into a number of regions, pixels. In 
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the digitized image each pixel is assigned a value proportional to the optical density of 

the analog radiograph's pixel. This digital representation of the image will resemble it's 

analog counterpart depending on the number of pixels present in the digitized image, 

and the number of steps used to represent the variations of grayscale in the radiograph. 

Though, ideally, it is desirable to have as many pixels and steps as possible, it becomes 

costly to incorporate a digitizer which has a very high resolution (spatial as well as step). 

It is necessary to overcome these bottlenecks by using innovative processing tech­

niques which will extract the necessary information from the digital image and let the 

investigator enhance distinctive features in the image which may be particularly useful. 

Various algorithms for processing these images exist, and are widely used in such var­

ied fields as medical diagnosis to remote sensing. These image enhancement algorithms 

can be used to improve image qualities including noise suppression, edge detection and 

trend removal. This work involved a specific focus on x-ray digital imaging and the en­

hancement of such images to provide a low-cost flaw detection mechanism using low-end 

(8-bit) film digitizers. 

Prime areas of application of the methodology developed include inspection of nuclear 

reactor shields for micro-cracks. X-ray images of such structures are stored in the form 

of radiographs, and the quantity of such hard-copy images is high. If there was available 

a means to store these radiographic images in digital form it will aid in the periodic 

archiving of such images, which is mandatory in such high risk applications as nuclear 

reactors. 

Air gaps and depth of penetration of weld, when two materials are welded together 

are indicators of the strength of the welding. Using radiographic, non-intrusive imaging 

techniques, it is possible to calculate such parameters. Such techniques are sought after 

in areas like transmission casings in automobiles. 

A part from the ease of storage, the need for remote access and retrieval of such 

information makes digitization of the radiographs attractive. In order that there is 
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minimum loss of information when such a digitization process is employed, further image 

processing and enhancement techniques are necessary. 

Scope of Research 

There exists high-end film digitizers capable of providing a very high pixel resolution 

and spatial resolution. These are laser based systems and these digitizers use 12-16 bits. 

The quality of the images obtained are of a high degree. Further, the time involved in 

digitizing a radiograph is minimal (typical commercial systems take 1 minute to digitize 

a 14 by 17 inch radiograph). Such systems are expensive, but, there are applications 

which justify such costs. 

On the other end, are the low cost systems, which make use of a 8-bit digitizer 

and still try to maintain as much information content as a high-end system. Since 

the number of radiographs that need to be digitized periodically, as part of government 

safety regulations, is large, it is necessary to find means to digitize radiographs using cost 

effective, low-end systems, without loosing much information. However, such systems 

must be able to meet the performance standards requirements, which include the ability 

to cover a wide range of optical densities ranging from 0 to 4, and also to provide spatial 

resolution of the order of 35 to 50 microns. 

It is necessary to devise new schemes for film digitization and manipulation, if we 

envisage using low-end, 8-bit digitizers and meet the quality standards of the high-end 

counterparts. 

The purpose of this work was to provide a low-cost means to digitize x-ray radio­

graphic films that can provide material compositional and structural information. This 

information retrieval was done in two phases. The first involved designing a means 

to digitize radiographs by illuminating them and storing the digitized result as a file. 

The second phase was to devise an algorithm that would provide image enhancement 
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techniques to overcome limitations imposed by the image display system and the 8-bit 

digitizer that is used. 

It was necessary to provide means to circumvent problems of the dynamic range 

of visible i1nage densities (and hence grayscales), when viewing an 8-bit image. Since 

our objective was to use an 8-bit image and still be able to capture information that 

would throw light on minute variations in the optical densities of the radiograph, it 

was necessary to first gather the information from a number of sources, by varying 

parameters that would change the visible optical densities and cover the entire range 

of densities. Then, upon processing this information, a representation medium was 

necessary to display only that much information at a time, which would retain the 

detail and let the investigator traverse the range of densities he wishes to view at a 

given time, and display only this range. 

The issue of obtaining calibration standards for processing different grayscale images 

digitized at varying illumination intensities was addressed, which showed the possibilities 

of algorithm-induced perturbations in the final composite image, the reasons for their 

occurance and ways to tackle them. 

Description of the background necessary for obtaining digital images from radio­

graphic films, necessary mechanism for arriving at an image enhancement algorithm 

and the theory behind the representation of images is presented in chapter 2. Chapter 3 

presents the description of the system used to obtain such images and the algorithm that 

was developed for this work. This also includes the calibration schemes that were used 

for this photo-densitometer system. Chapter 4 illustrates the results of the field trials 

on typical real-world materials (including Aluminum and steel castings). The summary 

of this work is presented in chapter 5, along with suggestions for further investigation 

to improve the digitization and image enhancement techniques. 
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2 BACKGROUND 

X-ray iinaging helps in obtaining insightful information about the composition of a 

n1aterial in a non-destructive manner. It is necessary to process the information available 

from an x-ray radiograph, so that an investigator is able to visually inspect the material, 

and also this information must be ideally stored in some electronic means, so as to enable 

retrieval as well as transmission. The objectives of such a process involve understanding 

of 1) information about how an x-ray image is obtained and it's characteristics, 2) 

method by which this x-ray image is transformed to be represented in a manner which 

will facilitate processing and storage. 

This chapter discusses the background that has gone into all of the above objectives. 

First, the general x-ray imaging background will be presented, proceeding from which, 

a more general treatment of how an image is represented and the different methods 

of processing a digital image will be presented.Background for considering the various 

image enhancement algorithms and the image processing paradigm, in general, will be 

presented in this chapter. 

X-ray Radiograpby 

Non-Destructive Evaluation (NDE) of material imperfections is an intrinsic aspect 

of material characterization and inspection. Such methods of evaluation encompass a 

range of processes, extending from simple visual inspection to laser-based techniques. 

Radiography, ultrasound, eddy current, magnetic particles, and liquid penetration are 
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some of the widely used techniques [1]. 

Most of these techniques involves the excitation of a source of energy on the specimen 

under evaluation, observing the effects of this excitation and analyzing the results. Such 

investigation, which leave the material intact, provides useful information regarding 

the structural composition of the material, and hence, material defects (such as flaws 

including cracks, voids and changes in the material composition). 

In the case of radiographic detection or evaluation, an x-ray beam is made incident 

on the material of interest, and the projections detected, thereby registering qualitative 

information of the object as well as the anomalies inherent in them. Ultrasonic tech­

niques work by projecting an acoustic signal into a solid object, which is reflected when 

it reaches a flaw. Eddy current inspection involves supplying an electro-magnetic field 

to a metal specimen and observing the interaction. 

Radiographic inspection NDE is inherently a visual inspection tool, in that, images 

and radiographs obtained upon x-ray excitation and registration on, generally, photo­

graphic films, are inspected by an individual to obtain information. This method does 

not require any physical contact with the object under investigation, and hence there 

are few restriction on the type of objects that can be subjected to such inspections. 

Interpretation of the data thus obtained is easy, with it being represented in an image 

form. The following will provide a background to the physical process of x-rays, their 

nature, interaction with material and the image detection techniques used. This will be 

useful in understanding the need to process the information obtained. 

X-rays are high energy, ionizing, electro-magnetic radiation in the range of lKeV to 

lMeV [2]. Although they are invisible to human eyes they have a photographic action 

similar to visible light. There exists two methods to generate x-rays, the most common 

being the use of radio-isotopes or bremsstrahlung sources. These differ in the spectrum 

of radiations produced, with the former producing a single energy emission and the latter 

is typically produced by commercial x-ray machines, resulting in a broad spectrum of 
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energy. These are generated when electrons are created by a heated filament, and then 

accelerated to high energies and bombarded onto metal targets, the abrupt deceleration 

upon collision producing the x-rays. This study has used bremsstrahlung x-ray quanta, 

although the results of this work are not limited to these sources. 

For material inspection, the x-ray beam is projected onto an object. The amount of 

absorption of the x-rays depends, among other things, on the density of the material. 

Hence, the object will scatter some photons and absorb some. The scattered photons 

and the photons not absorbed by the material fall on the detector, resulting in an image, 

which is characteristic of the object's 1naterial and composition. More photons reach the 

detector if the material region is thin, and vice-versa. Hence, in the film (which is the 

detector), the thicker material regions will have a lower film density and appear light in 

shade; with the thinner regions appearing dark. 

A film is the most common industrial detector used, owing to, the high quality of 

image produced and the ability to lend itself to archival procedures. A radiograph is a 

photographic image produced upon the exposure of a film to the ionizing radiations which 

pass through the material under investigation. This film upon development, darkens 

with respect to the amount of incident radiation. A reaction occurs with the silver 

halide crystals within the film emulsion when the film is exposed to electro-magnetic 

radiations (light or x-rays) [3]. 

The levels of gray in such a radiograph can be characterized using optical density 

measurements using what is called a densitometer. Typical industrial radiographs have 

densities ranging from 0-5.The measurement of density is based on the intensity of the 

viewing light. Both the initial light intensity (10 ) and the transmitted light intensity (It) 

in the definition of film density are based on the light from illumination used to view 

the developed film. This intensity is not related to the aforementioned x-ray intensity. 

The optical density of the film [4] is defined by 
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D = logw( Io/ It) 

The exposure (D) of the film is based on the speed of the film (s) and time (t) [5]. 

D = Da(l- e-s*I*t) 

There exists an alternative to film/radiograph based imaging, Real- Time Imaging. 

This may be used in instances involving a large volume of materials under evaluation. 

Such a system consists of an image intensifier, a camera, and a monitor. The im­

age intensifier, consisting of a phosphor screen, a light-to-electron screen behind it, a 

photo-multiplier, and an output screen, converts x-rays to visible light and increases the 

intensity of the image. The resulting image is then viewed using a camera subsequently 

connected to a monitor. For radiograph digitization this signal will then be fed to an 

imaging board on a computer. The digitization process electronically maps out the 

signal being received by the camera. The signal is converted to a numerical code that 

shows the intensity level of each pixel on a 0-255 scale, where black is equal to zero and 

white, to 255. This digital form can then be used to extract and process information 

about the image (6,7]. 

Digital Representation of X-ray Radiographs 

As mentioned earlier, there exists a need to represent the x-ray radiograph in a digital 

form. X-ray image digitization proceeds in the following steps and has the following basic 

stages 1) the CCD Sensor, 2) Video pre-processing, 3) Analog video processing, 4) Video 

digitization and 5) Sync and power boards [8]. 

The light from the radiograph is brought into focus at the imaging plane of the 

CCD. An optical block filters out the IR component of light. In the CCD, integration 

time is defined as the duration for which charge is allowed to accumulate in the CCD 

charge sites. The amount of charge that is integrated in each pixel well is proportional 
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to the illumination received at each active pixel site on the CCD. Anti-blooming pulses 

during the horizontal and vertical blanking areas trigger anti-blooming gates that are an 

integral part of the active pixel. Blooming is the phenomenon in which a bright spot of 

light in the field of view of a video camera appears to be larger in size. This could result 

in unwanted artifact in the digitized image of the radiograph. Blooming occurs when a 

charge site, exposed to a very bright light, fills up with charge and then overflows to the 

neighboring charge site, causing a bright spot to appear larger in size. By deliberately 

decreasing the rate at which the charge well is filled beyond the half point, blooming is 

reduced. 

During the vertical blanking interval (the interval during which the raster retracts 

to the first column of the charge matrix), the entire charge matrix that was integrated 

in the previous field (1/60 sec) is shifted to the opaque storage area of the CCD. This is 

accomplished by a series of pulses, each of which causes the charge matrix to shift down 

by one line. In the following field, the charges are transferred from the storage area of 

the CCD to on-chip serial shift registers and then sequentially to the detection nodes 

where they are made available as signal voltages. When one field is being read out from 

the storage area, the other field is being integrated in the imaging area of the CCD. 

The low-level video signal voltage from the CCD is fed through a high-speed sample­

and-hold amplifier, clamped ( DC level shifted for black reference) and amplified before 

further video processing. It is in this section that the three channels of video corre­

sponding to the three basic colors must be equalized, such that the contribution of these 

three individual channel's black reference are the same, before they can be multiplexed 

into a single channel of video. In order to accomplish this, two channels are provided 

with variable gain and offset; one channel (considered the reference channel) has fixed 

gain and offset. The two variable channels are adjusted by means of white balance and 

black balance potentiometers until all the three channels are properly matched. 

The signal from the preprocessor stage is fed to the video processor which performs 
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the following functions related to the analog (RS-170) video: 

(1) Garnma Correction: Gamma is a measure of the linearity of the camera's response to 

light. The CCD is inherently a linear device. The output signal is directly proportional 

to the scene illumination (or exposure). Doubling the exposure will double the output 

signal. But, the phosphors used to make the monitors are non-linear; typically, the 

phosphors have less brightness response for dark signals and more for bright signals. To 

compensate for this, the opposite kind of non-linearity is introduced in the video signal 

from the camera. The video processor adds gain for dark signals and reduces the gain 

for bright signals, such that the overall system ( carnera and monitor) produce a linear 

effect. 

(2) Gain and Offset control: In order to tune the dynamic range of the camera to suit the 

application the gain of the camera can be varied. This helps in low-light applications. 

The increase in gain will also result in the increase of the noise. 

(3) Sync Insertion: The composite sync signal is added to the output video signal to 

create the composite video signal. 

( 4) Video output driver: The video processor is directly capable of driving a 75 ohm 

co-axial cable. 

The low level video signal from the pre-processor is clamped to a standard DC level 

and amplified on the sensor and video board before analog-to-digital conversion. 

The output from the digitizer is a data stream of parallel 8 bit words. Several 

handshaking signals are also provided. This is translated by an image processor into 

frames of video by means of storing the video data into appropriate locations of a frame 

buffer, based on the information encoded in the handshaking signals. The number of 

pixels (charge collection sites) on the CCD are 755 (horizontal)x242 (vertical), with 

pseudo-interlacing resulting in an effective matrix of 755(H) x434(V). 
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Image Enhancement Techniques 

Image enhancement refers to accentuation, or sharpening, of image features such as 

edges, boundaries, or contrast to make a graphic display more useful for display and 

analysis. The enhancement does not increase the inherent information content in the 

data. But it does increase the dynamic range of the chosen features so that they can 

be detected easily. Image enhancement includes gray level manipulation, contrast ma­

nipulation, noise reduction, edge crispening and sharpening, filtering, interpolation and 

magnification, pseudocoloring, and so on. The greatest difficulty in image enhance­

ment is quantifying the criterion for enhancement. Therefore, a large number of image 

enhancement techniques are empirical and require interactive procedures to obtain sat­

isfactory results. However image enhancement remains an important topic because of 

it's usefulness in virtually all image processing applications [9]. 

There exist a relationship between the structure of images and 1) the problem of 

quantitative representation, 2) the effect of desired processing and/or unwanted distor­

tion, and 3) the interaction of images with the human observer. They provide a frame­

work in which we think about and perform our image processing tasks. We need to 

understand the relationship between the objective (physical) and the subjective (visual) 

aspects of many image processing tasks. 

Some of the common image enhancement techniques available can be classified into, 

(1) Point operations, (2) Spatial operations, and (3) Transform operations. 

Point Operations 

Point operations are zero memory operations where a given gray level u E [0, L}, is 

mapped into a gray level v E [0, L], according to a transformation 

v = J(u) 
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Where input and output gray levels are distributed between [ O,L ]. Typically and in 

our case, L = 255. 

Low-contrast images occur often due to poor or nonuniform lighting conditions or 

due to nonlinearity or sn1all dynamic range of the imaging sensor. This transformation, 

called contrast stretching can be expressed as 

au, 0:::; u <a 

v = {3( u- a)+ Va, a :::; u < b 

1(u- b)+ Vb, b:::; u < L 

where, a, f3 and 1 are the slopes which determine the relative contrast stretch. The 

parameters a and b (defining the valley between the peaks of the histogram) may be 

obtained by examining the histogram of the image. For example, the gray scale intervals 

where pixels occur most frequently would be stretched most to improve the overall 

visibility of a scene. The slope of the transformation is chosen greater than unity in the 

region of stretch. 

A special case of contrast stretching where a = f3 = 0 is called clipping. This is 

useful for noise reduction when the input signal is known to lie in the range [ a, b ]. 

Thresholding is a special case of clipping where the output becomes binary. For exam­

ple, a seemingly binary image, such as a printed page, does not give binary output when 

scanned because of sensor noise and background illumination variations. Thresholding 

is used to make such an image binary. This can be expressed as 

0, 0 :::; u < a 

v = au, a~ u < b 

L, b:::; u < L 

A negative image can be obtained by reverse scaling of the gray levels according to 

the transformation 

v=L-1t 
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Digital Negatives are useful in the display of medical images and in producing negative 

prints of images. 

Intensity Level Slicing permits the segmentation of certain gray level regions from 

the rest of the image. This technique is useful when different features of an image are 

contained in different gray levels. We may express this gray-level window slicing as 

J L, a:::::; u:::::; b 

v = l 0, otherwise 

which fully illuminates the pixels lying in the interval [ a, b ] and removes the background. 

It 1nay be necessary to compress the dynamic range of the image data, when it is 

very large. For example, the dynamic range of an image is so large that only a few pixels 

are visible. This dynamic range can be compressed via the logarithmic transform 

v = c log10(l + lui) 

where cis a scaling constant. This transformation enhances the small magnitude pixels 

compared to those pixels with large magnitudes. 

In many applications it may be desired to compare two complicated images. A simple 

but powerful method is to align the two images and subtract them. The difference is 

then enhanced. This is called Image Subtraction. 

Spatial Operations 

lVIany image enhancement techniques are based on spatial operations performed on 

local neighborhoods of input pixel locations. 

lS 

When each pixel is replaced by a weighted average of its neighborhood pixels, that 

L L a(k, l)y(rn- k, n -l) 
(k,l)EW 
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where y( m,n) and v( m,n) are input and output images, respectively, W is a suitably 

chosen window, and a(k,l) are the filter weights, it is called spatial averaging. An 

example of one such spatial averaging filter is one with equal weights, giving a( k,l) = 

1/ N w, where N w is the number of pixels in the window W. 

Such spatial averaging is useful for noise smoothing, low-pass filtering, and sub­

sampling of images. 

To protect the edges from blurring while smoothing, a direction averaging filter can 

be useful. Spatial averages v( m, n : 0) are calculated in several directions as 

1 
v(m, n: 0) = N, L L y(m- k, n -l) 

O (k,l)EWe 

and a direction O*is found such that ly(m, n)- v(m, n: 0*)1 is minimum. Then 

v(m,n) = v(rn,n: 0*) 

gives the desired results. 

In Median Filtering, the input pixel is replaced by the median of the pixels contained 

in a window around the pixels, and the pixels are arranged in the window in increasing 

or decreasing order and picking the middle value. The advantage is that it can remove 

isolated lines or pixels while preserving spatial resolutions. 

Transform Operations 

In the transform operation enhancement techniques, zero-memory operations are 

performed on a transformed image followed by the inverse transformation. Starting 

with a transformed image V = v( k,l) as 

where U = u( m,n) is the input image. Then the inverse transform of 
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v*(k,l) = f(v(k,l)) 

gives the enhanced image as 

Available Systems for Radiographic Imaging and Processing 

Most systems available for an NDE inspector, do not provide a tool to manipulate 

the regions of interest in the image density ranges of 0 to 4.5. Though, there exists 

radiograph digitizers capable of providing a digital image which can capture the entire 

dynamic range of the typical radiographs, these incorporate 14 or higher bit digitizers, 

which makes them costly. 

Video Contrast Enhancers: 

These instruments provides real-time contrast expansion, shading correction, and 

inversion. The contrast enhancement function improves visibility of low contrast features 

by stretching a selectable portion of the input video's grayscale to fill a larger gray scale 

range at the output. Those portions of the grayscale not selected for stretching are 

compressed so that the overall video amplitude remains unchanged. Shading correction 

can improve an unevenly illuminated image by increasing or decreasing brightness in 

selected regions. The inversion function, by creating a negative image, can improve 

visibility of cracks, pits, scratches, and defects on highly reflective surfaces. 

Capabilities of easily specifying a region of interest for manipulation seldom exist. 

It will be easier if one is able to qualitatively 1nanipulate an image and see the results 

on a visual display. One way to do this would be to use high end digitizers which can 

provide good image resolution and contrast. But, the human eye has a fixed range 

of discerning the minute changes in the grayscales, and hence it is difficult to obtain 

information regarding material compositional variations. Hence, it would be easier to 



www.manaraa.com

16 

provide a small range of viewable grayscales at a time, and make this range dynamic, 

providing the investigators with a GUI tool which will let them move across the range of 

grayscales, rather than providing him with a higher bit image with a lot of information 

at a time. 

Film Digitizers: 

Most film digitizer need to employ a scanning laser beam to measure film optical 

density (OD) one pixel at a time with high signal-to-noise ratios in order to obtain 

high resolutions and optical density resolutions. It will be more cost effective if we can 

incorporate a CCD camera as the image acquisition component, and still come up with 

techniques to extract as much (if not more) information as one would, if we use the 

above mentioned, commercially available digitizers. 

Such systems do not have any dynamic capability to increase the range of optical 

densities they are capable of acquiring. We would have to have more than one such 

digitizer if we need information at higher densities. If however there was a means to 

dynamically specify such ranges, and have the system configure itself to change the 

illumination intensities, as appropriate to such densities, and digitize the radiographic 

image, it will be more cost effective and at the same time, will lend us with more 

information. 
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3 SYSTEM DESCRIPTION 

Image quality enhancement in order to obtain more information from a digitized 

x-ray image is an important aspect in non-destructive evaluation of materials. This is 

used to view various material defects (flaws) which may not be visible if certain image 

processing techniques are not applied to salvage such information. A new algorithm and 

technique to do the aforementioned is presented in this chapter. 

Pl1oto-densitometry 

An x-ray radiograph has regions of differing densities ranging from 0 to 5 (in typical 

applications), with the lower densities of the radiograph representing highly dense ma­

terial regions and higher densities, the less dense regions. Material defects which have 

different densities from the parent material show up in the x-ray radiograph as regions 

of different gray-scales. Upon the digitization of this radiograph, one must be able to 

distinguish these flaws. If the difference in the grayscales of the defect region and the 

parent region are less than the gray-scale step size of the image, it will not be possible 

to distinguish between these two regions in the digitized image. 

A digitized image is obtained from an x-ray radiograph by back-illuminating the 

radiograph and digitizing it. A digitized gray-scale image of an x-ray radiograph could 

be anything ranging from 8 to 24 bits (or higher). This describes the number of bits 

available for encoding each of the pixels during digitization. Hence an 8-bit gray-scale 

image has 28 (256) gray-scale levels. A 24-bit image is able to represent an image in 
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detail, better than an 8-bit image because one is able to distinguish between finer gray­

scale levels in the 24-bit image. Hence the number of bits used for digitization decides 

the amount of detail that is captured in the digitized image. 

The camera used for digitization has a fixed dynamic range. This is the range of 

optical densities the can1era is capable of distinguishing in the radiograph being digitized, 

as a result of variations in the range of light intensities reaching the camera. Hence, 

depending on this dynamic range, there is a limitation on the region of optical densities 

one wishes to register, in the digital image. 

5 

4 

3 

2 

0 

Large dynamic range, 

low sensitivity 

2 

0 

Low dynamic range, 

high sensitivity 

5 

0 

High dynamic range, 

high sensitivity 

+density SU:JI! 

Figure 3.1 Dynamic range of densities in an digitizer. 

Figure 3.1 shows these limitations of a camera used for digitization. It is possible 

to have a camera capable of covering a wide range of optical densities (0 through 5). 

This is called the dynamic range of the camera, which gives you a measure of the ability 

of the camera to register variations in the optical density over a wide range. On the 
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other hand, such cameras may have low sensitivity. Sensitivity is a measure of the 

ability of the camera to capture minute variations in the optical densities. The steps 

within which the camera is able to distinguish between densities is called the step size. 

Typically, a highly sensitive camera only has a small dynamic range. We must be able 

to capture these minute variations, and also be able to traverse a wide dynamic range 

of densities. Such a scenario is also presented in Figure 3.1. The digitizer must be able 

to register minute variations in the optical densities and distinguish between them. An 

optical density variation of 0.001 should be registered in the digitized image. This can 

be accomplished only if the digitizer has available high number of bits (16-18) such that 

it is sensitive enough to divide the available light intensity range into small steps. 

An 8-bit camera has available 256 levels to encode the range of optical densities. At 

the same time 16-bit camera has 65536 levels available to encode the range of optical 

densities. Sensitivity of an 8-bit camera, hence is less compared to a 16-bit camera. Fur­

ther there are available high-end cameras which have a wide dynamic range. A low cost 

CCD camera has a litnited dynamic range (typically in steps of 1) of coverable densities. 

One method to overcome this limitation is to have more than one digital image of the 

same radiograph with each digital image covering a specific range of densities. Evidently, 

this will result in a number of images necessary to be stored, for one radiograph. 

Since we are illuminating the radiograph, it is necessary to ensure that the light 

box is capable of providing enough light for the higher optical densities to register valid 

encoding. 

Figures 3.2, 3.3, 3.3 and 3.5, show typical digitized radiographic images at two dif­

ferent illumination intensities. It can be seen from these images that, in the first image 

(Figure 3.1), information is available about the range of densities between 0.5 to 1.4. All 

regions with optical densities greater than 1.4 result in a fully dark pixel (gray scale of 

approximately 0). Hence this particular image has not been able to register information 

about regions with densities above 1.4. The second image (Figure 3.4) is one taken at a 
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F igure 3.2 Digitized image of a aluminum step wedge with low illumination . 

different light intensity and it can be seen that this particular image has been capa ble 

of capturing information about regions wit h optical densities lying in the range 2 to 2.9. 

All regions with densities less than 2.0 has resulted in a fu lly bright , flushed grayscale 

of 255. We can gather no information about regions with op tical densities less than 2.0 

from this (Figure 3.5) image. 

We must hence find a means to be able to capture information about the entire 

dynamic range of optical densities in one digital image. 

Photo-densitometry is an innovative way to overcome these limitations of the digitiza­

t ion process. In this method , different digital images are taken, of the x-ray radiograph, 
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Figure 3.3 Grayscale versus density. 

at different light illumination intensities. This results in digital gray-scale images of the 

same radiograph. But, each of these digitized images may contain information which 

could not be registered by other images due to the reasons mentioned above. Each of 

these individual images are 8-bit images, but, because of the corresponding illumination, 

they are able to capture film densities from 0 to 4, with each image covering a specific 

film density range. 

The Photo-densitometer is able to take in these different digital gray-scale images 

and obtain one composite image. By specifying the region of gray-scales (or optical 

densities) which need to be viewed, the composite image is processed to display the 

region of interest, by scaling it to the entire 8-bits. Hence, there is no loss of information 

due to the limitation of the digitization process and one can scroll through the entire 

range of densities, viewing minute nuances in the gray-scales which throws light on the 
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Figure 3.4 Digit ized image of a aluminum step wedge with high illumina­
tion. 
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Figure 3.5 Grayscale versus density. 

composition of the material and come up with insightful information about defects, 

which are not visible under normal imaging techniques. 

Image Acquisition and Digitization 

In order to digitally process an image it is necessary to record the image as a file and 

store it. Most film digitizers available now are laser based digitizers which are costly. A 

more cost effective way to digitize an x-ray radiograph would be to use a video camera, 

a frame grabber and a light-box for back-illuminating the radiograph (Figure 3.2). 

A variety of cameras are available which are capable of acquiring an image and 

translating it into a composite video signal. Examples among these include the CCD 

(Charge Coupled Device) and CID (Charge Induced Device). 

In terms of electronics a CCD can be described as a series of parallel plate capacitors 
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which store charge. The charge is optically generated by the absorption of photons which 

are converted to electron hole pairs in the same manner as a typical photo-diode sensor. 

The major difference, however, being that this diode is operated in the integrating mode 

than the conducting mode. That is, instead of reverse biasing the diode and constantly 

sensing the current increase caused by photons, a CCD photo-element senses the change 

in voltage induced by the collection of charge in a short period of integration. The 

period of integration must be shorter than around 100 ms due to the fact that the CCD 

has a temporary space charge depletion layer created by a pulse of negative bias on the 

diode.This effect is governed by the equation CV=Q. That is, for a given capacitance, 

a sensed charge will provide a corresponding voltage. The charge generated is then 

transferred into a shift register which is known as a CCD. The charge is then transferred 

by a series of pass or transfer gates. The camera operates the CCD sensor by providing 

the necessary biasing and clocking information to run the charge storage capacitors in 

the correct sequence. The signal charge is converted to a voltage by the sensor which is 

then amplified and conditioned by the camera. 

The frame grabber acquires the composite video signal and converts a single frame 

into a digital form. The frame is broken down into a number of pixels with typically 

there being 640 x 480 (307200) pixels. Each pixel takes a gray scale value from 0 to 256 

(if it is an 8-bit camera). Frame averaging is employed to suppress noise and also the 

light intensity fluctuations due to line voltage variations. 

The light-box used for back illuminating the radiograph helps in improving the con­

trast. Uniform illumination must be ensured so that the light-box does not induce ad­

ditional artifacts. Additionally variable light intensity control is necessary for obtaining 

images at different intensities. 

The digitization equipment used for this work included a Data Translation Digiti-

zation Board, a COHU High Performance CCD Camera and a Light-box from S & S 

X-Ray Products Inc., fitted with three No. 2 Super Flood EBV bulbs. The light-box 
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was capable of going up to a brightness of 13000 foot-candles. Further, in order to obtain 

a good range of view of the image, an AF Nikkor 28-85 mm, 1:3.5-4.5 f-stop lens, was 

used for this work. 

Description 

First the four gray-scale images are read. An image is represented as a two-dimensional 

M x N array of non-negative integers f(x,y), where 1 < x < M and 1 < y < N are co­

ordinates of structures in the image. The image segment represented by the coordinates 

{x,y) is called a picture element or gray level (gray-scale). The gray level ranges from 0 

to 255. This gray level represents the optical density of the square area of the film [3]. 

A two-dimensional radiologic image has a size of M x N x k bits, where 2k equals 

the gray level range. In our particular case, we consider a 640 x 480 x 8 bits image. 

A radiograph with an optical density of 0 will be very transparent allowing consid­

erable amount of light to pass through it. This will cause a gray-scale of 255 to be 

registered. A radiograph with an optical density of 4.0, on the other hand will register 

a gray-scale of 0 and allow less light to pass through. 

The first step in the algorithm involves the conversion from the gray-scale value 

of each pixel to the corresponding optical density value. The optical densities of the 

radiograph will be used for manipulation. This is so because, the optical density of a 

pixel is fixed for a radiograph, whereas the gray-scale depends on the intensity of light 

illuminating the radiograph. 

This conversion from gray-scale to optical density is accomplished by the algorithm 

using the generic look-up table approach. For this look-up table, the standard values of 

gray-scales corresponding to optical densities under a given illumination is first recorded 

under similar environments. This enables us to obtain calibration curves for each light­

box intensity, with curves representing the optical density for a given gray-scale. It 
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Figure 3. 7 Calibration curves at different light intensities (expressed as a 
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was observed that the plot of gray-scale and optical densities obeyed an exponential 

relationship, and hence a polynomial fit to these curves will provide an equation which 

can be used as a standard for converting from gray-scales to optical densities for a given 

light-box illumination intensity. 

A calibration strip with known optical densities, traceable to NIST, was used for this 

calibration step. The calibration curves along with the calibration radiographic strip are 

given in the Figures 3. 7 and 3.8. 

We now have four arrays containing the optical densities of the individual pixels of the 
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Figure 3.8 lmage of the standard calibration strip radiograph. 

Image. Since these four images a re of the same radiograph taken at four different light 

intensities, the optical densities which were saturated in the first image are represented 

in the second image and so on. Hence, the information regarding the entire optical 

density range is availa ble, albeit as four different images. 

The nexL sLep in the algori t hm is to fin d a means to obtain an image which will 

have all t he optical density information and represent it in a single file. T his is referred 

to as image compositizalion. T he algorithm proceeds to perform image composit ization 

in the following manner. We proceed pixel by pixel and traverse through the entire 

image. Further, we proceed from image-1 through image-4 (with each of these images 

corresponding to a light intensity of a percentage of the maximum), considering one 

image at a t ime. 

The first pixel of the first image is considered. If the optical density of this pixel is 

lesser than a specific cri t ical opt ical density ( wi tb respect to this particular illumination 

intensity) , we use the next image in line to obtain the correct optical density value. If, 

furt her, t he optical density still remains lesser than a specific cri t ical optical density 
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(with respect to this particular illumination intensity), we move over to the next image 

in line and obtain the correct optical density. 

Once, for a particular pixel, we have obtained the correct optical density, by travers­

ing from one image to another, we proceed to the succeeding pixel and perform the same 

above procedure to obtain the correct optical density value. At the end of this traversal 

through the digital image, pixel by pixel, and registering the actual optical density of 

the radiograph, we are left with an array containing the actual optical densities of the 

entire radiograph. 

Once the user specifies the range of optical densities he wishes to view (done by 

specifying the minimum and maximum optical densities), all pixels containing optical 

density values lesser than the minimum specified value are made equal to the minimum 

optical density; on the other hand, all actual optical densities of pixels of the image 

having an optical density greater than the specified maximum are made equal to the 

maximum. Though, by doing so, we are loosing information that may be present in 

the pixels which have optical densities lesser than the minimum (or greater than the 

maximum) and thereby ignoring flaws that might be present in the material, the rationale 

behind doing so is to provide the user with a small window in the density spectrum of the 

image and let him view the flaws that may be present inside this small window. After 

which one can move this proverbial window to view another set of optical densities. 

All the pixels having optical densities between the minimum and maximum specified 

value are the pixels of interest and as much information as possible must be gleaned from 

this and provided for display. We have available 8-bits for display at a time. Hence, the 

algorithm scales the optical densities to this range, converts it to gray-scale and displays 

the compositized image. This is shown in Figure3.9. 

What this image optical density scaling does is to map the density variations between 

the minimum and maximum to a range of 256 gray-scale values. Thus, we have reduced 

the lost information owing to the restriction of both the 8-bit camera/digitizer and the 
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8-bit display. Even minute variations in the optical density of the radiograph is now 

picked up by the algorithm and scaled up to a level where it becomes obvious to the 

investigator. 

Algorithm 

The algorithm for obtaining a composite image from four different images is given 

below­

begin: 

Read the 4 Image files into 4 arrays: 

lmageArray1 =Image at 80% of maximum intensity 

lmageArray2 = Image at 70 % of maximum intensity 

lmageAn~ay3 = Image at 60 %of maximutn intensity 

ImageArray4 =Image at 55% of maximum intensity 

Convert the gray-scale values of the pixels of each of the images into corresponding 

optical density values using the generic look-up table approach and store in separate 

arrays: 

Dens1 = -0.418515 log [ImageArray1] + 3.27845 

Dens2 = -0.418983 log [ImageArray2] + 3.9786 

Dens3 = -0.359767 log [ lmageA rray3] + 4.08223 

Dens4 = -0.394983 log [ImageArray4] + 4.62595 

Perform Image compositization: 

if (Dens1 > 1.4) 

if ( Dens2 > 1.87) 

if ( Dens3 > 2.29) 

CompositeDens = Dens4 

else 



www.manaraa.com

32 

CompositeDens = Dens3 

else 

CompositeDens = Dens2 

else 

CompositeDens = Densl 

Scale the image based on the minimum and maximum selected by the user: 

Composite/mage = ( -2048.0 ( CompositeDens)) + 8192.0; 

if( Composite/mage < minimum) 

Composite/mage = minimum 

if( Composite/mage > maximum) 

Composite/mage = maximum 

if( Composite/mage > minimum or Composite/mage < maximum) 

Final/mage = ( (Composite/mage - minimum) \ (maximum - minimum)) x 255.0 

Display Final/mage, the image scaled to the region of interest. 

end. 

The above terms represent individual pixels, and one must traverse though the entire 

image, and perform the above manipulation for each of these pixels. 

Calibration 

In order to convert the gray-scale image to an optical density image, a standard 

calibration strip radiograph, who's optical densities are known, is necessary. 

For a given illumination of the light-box intensity, we need to calculate the gray­

scale values of the known optical densities. A typical plot of the gray-scale versus the 

optical density is shown in Figure 3.6. These curves are for light intensities expressed 

as a percentage of the maximum. These calibration curves will be used to obtain the 

relationship between the gray-scale value obtained by the digitizer and the actual optical 



www.manaraa.com

33 

density of the radiograph. An exponential best fit to these curves provides us with an 

exponential equation which can be used by the lookup table for conversion. Since we need 

to eliminate noise, we accumulate more than one frame and hence the gray-scale values 

range from 0 to 1275 for each image. It is necessary to maintain similar light conditions 

during calibration, as would exist during the actual process of image acquisition, so that 

we are able to convert accurately the optical densities of the radiograph. 

Choice of Light Intensity 

This is one of the crucial decisions one needs to take with respect to acquisition and 

calibration. Improper choice of calibration curves as shown in Figure 3.10 could lead to 

discontinuities in the composite image (shown in Figure 3.11). 

The algorithm is as such that, when moving from pixel to pixel in an image, if the 

density is greater than the critical maximum of this particular curve, control should move 

to the next curve (and hence image). The choice of this critical maximum becomes very 

crucial. 

Consider the first calibration curve, curve1, as shown in Figure 3.12. For an 

image taken at this light intensity, all optical densities greater than 1.0 will result in a 

gray-scale in the region where it is fully dark (gray-scales less than 40). Any artifact 

with matching densities (around 1.0) will not be visible in this particular image. But 

looking at the next curve, curve2, it is evident that optical densities close to and above 

1.0, result in gray-scales in the vicinity of 200 (Figure 3.14 and 3.15). 

An important aspect of discontinuity is that, this transition from one image to an­

other must be smooth and continuous. Ideally, the choice of the calibration curves should 

be such that, the maximum correctly distinguishable optical density for curve1 should 

also be the minimum correctly distinguishable optical density for curve2 and so on. 

What this continuity ensures is that, when, in the radiograph, there is a smooth 

transition of optical densities from 0.8 to 1.2, the pixels having densities of 1.0 and less 
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Figure 3.10 Improper calibration curves. 

will be obtained from the first image, and for any optical density greater than 1.0, it will 

be obtained from the next image. Since for the first curve, any gray-scales less than 40 

results in an erroneous interpretation of the optical density, we move over to the next 

curve to obtain the correct optical density. If there was a discontinuity, there will exist 

pixels having densities above 1.0, because of which the first curve will not be used to 

calibrate this pixel. But, since the minimum correctly identifiable optical density for the 

next curve is around 1.3 (owing to the discontinuity), all densities above 1.0 and less 

than 1. 3 will be erroneously decoded. 

An overlap of correctly identifiable densities and gray-scales must exist when choosing 
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Figure 3.11 Discontinuous composite image. 

the cali bration curves. On the other hand, the curves should not be over cramped such 

that it requires a number of curves to decode a small range of densities. 

The calibration curve equations used are given below for different curves­

cm·vel at 80 % of maximum light intensity : 

density = - 0.418515 log [grey-scale] + 3.27845 

cu·rve2 at 70 % of maximum light intensity : 

density = - 0.418983 log [grey-scale] + 3.9786 

CU1've3 at 60 % of maximum light intensity : 

density = - 0.359767 log [grey-scale] + 4.08223 

cu1·ve4 at 55 % of m aximum light intensity : 

density = - 0.394983 log [grey-scale] + 4.62595 
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F igure 3.13 Image of calibration radiograph at 80% of maximum intensity. 
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F igure 3.15 Image of calibration radiograph at 55% of maximum intensity. 
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4 RESULTS 

Image enhancement is an important aspect of NDE, the first step in this process 

digitization of radiographs for both storage and information extraction. As was seen 

earlier, there are three stages involved in this scheme. First, is to obtain the x-ray radio­

graph of the object under investigation. Second, is to convert the formal representation 

of this x-ray radio-graph into a form allow image processing. This involves digitization of 

the x-ray radio-graph. Third, is to apply image processing and enhancement algorithms 

to obtain the information regarding defects and flaws in the material. This should result 

in an image which accentuates the flaws present in the material, for the investigator to 

visually detect them. 

Field Runs 

Figure 4.1 shows the image of a typical part, in this case an aluminum casting taken 

at a light intensity illumination of 80 % of maximum. Evident from this image, and 

as was discussed earlier, is that the region within an image density range of 0 to 1.5 is 

only manifest and visible. All densities above this maximum density of 1.5 results in a 

gray-scale of 0. 

Figure 4.2 shows the same part's radio-graph digitized under an illumination of 70% 

of maximum light intensity. This image shows that all densities of less than 1.5 results 

in a gray-scale of 255 and all pixels having an image density of greater than 2.0 results 

in a gray-scale of 0. 
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F igure 4.1 Image of air conditioner compressor part taken at an illumina­
tion of 80% of maximum. 

Figure 4.3 shows the same part's radio-graph digit ized under an illumination of 60% 

of maximum light intensity. T his image shows that all densit ies less than 1. 75 results in 

a gray scale of 255 and all pixels having an image density of greater than 2.55 results in 

a gray-scale of 0. 

Figure 4.4 shows the same part's rad io-graph digitized under an illumination of 55% 

of ma.ximum light intensity. This image shows that a.ll densities less than 2.25 results in 

a. gray scale of 255 a.nd a.ll pixels having a.n image density of greater than 3.0 results in 

a. gray-scale of 0. 

These four images, taken at the same orientation of the x-ray radio-graph and under 

the given illuminations, was fed to the algorithm which processed the images result ing 

in a. cO'Inpositized image, shown in Figure 4.5. Though, the display system used was as 

such Lhat it accepted only an 8-bit image, this composilized image does not display in-
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Figure 4.2 Image of air condi tioner compressor part taken at an illumina­
tion of 70% of maximum. 

formation in a manner in which the inherent materi al defects are evident to the observer. 

Evident from the composite image, is the fact that the visual information available 

is limi ted, and, one is not able to clearly see and make out the flaws present. Since we 

developed a method to view a specified range of gray-scales (and hence, image densities) , 

we were able to select a. minimum and a maximum and scale this range to the available 

gray-scales, resulting in the images of Figures 4.6, 4.7, 4.8, and 4.9. 

These images were for a minimum-maximum gray-scale settings of 2389-3893 (Figure 

4.6) , 3072-4160 (Figure 4.7), 5415-7205 (Figure 4.8) and 7214-8192 (Figure 4.9) . 

Although these settings of the minimum and maximum gray-scales can be clone as a 

continuous process, thereby changing the range of view incrementally, presented here is 

only four of t hose image range settings. 
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Figure 4.3 Image of air condi tioner compressor part taken at an illumina­
tion of 60% of maximum. 

Weld Thickness Measurements 

One of the applications of the system developed is the measurement of the weld 

penetration depth, in incomplete or Lack Of Penetration (LOI) ins tances. A field run 

on a au tomobile transmission casing welding was conducted to measure quantitatively 

t he depth of penetration. 

Figure 4.10 shovis the typical profile of a welding. Here, it is necessary that the 

thickness b - c be measured, which wi ll give t he thickness of the air gap in the welding. 

We were able to measure t he th ickness of t he penetration to wit h in 5% accuracy. 

\iVith a radiograph of a calibration sample made of similar material as this casing, 

and it's thickness known, we can obtain a plot of the thickness versus density. Using 

this plot (shown in Figure 4.11) we can obtain t he sample's thickness at various points 
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Figure 4.4 Image of air conditioner compressor part taken at an illumina­
tion of 55% of maximum. 

of interest (a,b, and c) . Further, in order to emphasize the region of interest, we set the 

minimum and maximum gray-scales at 3362 and 5272 respectively. 

Figure 4.12 shows the standard sample's compositized image and F igure 4.13 shows 

the Eaton transmission casing's compositized image. Both these images are for a minimum-

maximum gray-scale sett ing of 3362 and 5272 respectively. It can be seen that the clark 

line in the middle of the welding is the air gap in the welding. 

EPRI's Proposed Standard 

Figure 4.14 shows the composite image of the radiograph obtained from EPRI before 

it was accepted as a standard radiograph. The outcome of a. beta. testing of this standard 

using the system developed, resulted in a. suggestion, which was later incorporated. As 

can be seen, the optical density step size of the calibration strip in this radiograph is 
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f igure 4.5 Compositized image, result ing from the image enhancement pro­
cess. 

high, and as a result of which, t here are not sufficient data points that can be used to 

calibrate a system . Since such standards were seldom tested on such low-end systems, 

such principal correctional suggestions were not made by other high-end film digitization 

methods. The minimum contrast requi red to be resolved in t his standard was a 6D = 

0.01 over a total density range of 4.0 . The system developed, was able to resolve these 

densities. The resolution requi rements for t he EPRI standard was 70 micron pixel sizes. 

This wa.s achieved by narrowing the field of view to 1.8 x 1.8 inches. 

Digitized ASTM Standard Radiogr aphs 

Figures 4 .15 and 4.16 show the digitized images of theE 446, reference radiographs for 

t he steel castings taken at medium voltage (nominal250 KVp) x-rays. These radiographs 

were obtained from ASTM, showing t he shrinkage porosity in steel castings, and, sand 
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Figure 4.6 Composite image with gray-scale window of 2389-3893. 

and slag inclusions respectively, and digitized using the developed system. It can be seen 

that the amount of detail cap tu red in these images is high , which is a direct consequence 

of the system and algorithm used to digit ize and enhance these images. 

Another standard radiograph used to test the resolution limits of the system devel­

oped (to compare it with the ability of the human eye to different iate variations in optical 

densities and resolution, from a direct viewing of a radiograph), was the penetrameter 

measurements. F igures 4.17 shows the digitized radiograph of a penetrameter on 1 inch 

of Aluminum at 120 kV without any filter. The sample was created by clamping 15 

sheets of 0.061 inch 2024 Aluminum together for a total thickness of 0.915 inch. Pen­

itrameters were taped to the surface. It can be seen that the composi te image (Figure 

4.17) does not show as much detail as that when seen from the radiograph directly. But 

when the minim um-maximum settings of the composite image is set to 2657-3459, the 
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Figure 4.7 Composite image with gray-scale window of 3072-4160. 

resultant image is shown in Figure 4. 18. This figure shows the 4T hole in the pene­

t rameter for the 11 sample, which is as far that the eye can perceive from the x-ray 

rad iograph d irectly. This is an affi rmation of the fact that , we were able to store as 

much informat ion as we can get viewing the radiograph directly. Hence the cligitization 

process has not lost much of the information available. 
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Figure 4.8 Composite image with gray-scale window of 5415-7205. 
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F igure 4.9 Composite image with gray-scale window of 7214-8192. 
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Figure 4.10 Welding profile of a transmission casing. 
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Figure 4.11 Thickness versus gray-scale calibration. 
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Figure 4. 12 Standard sample image. 
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Figure 4.13 Eaton transmission casing's image. 
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Figure 4.14 EPRI's proposed standard radiograph, under test . 
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Figure 4.15 Image of ASTM's standard radiograph showing shrinkage 
porosity. 
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Figure 4.1 6 Image of ASTM's standard radiograph showing sand and slag 
inclusions. 
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Figure 4.17 Composite image of penetrameter radiograph. 
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Figure 4.18 Composite image of penetrameter radiograph with nun-max 
window of 2657-3459. 
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5 CONCLUSIONS AND FUTURE WORK 

There are two distinct facets of visual x-ray flaw detection. One is to be able to 

acquire and digitize this x-ray radiographic image in such a way as to obtain enough 

information, which will aid in flaw detection. The other aspect is the ability to repre­

sent such images which will facilitate the investigator to pin-point specific areas found 

defective. 

The first objective can be achieved by opting for high-end image digitizers, which 

invariably are turning out to be laser based, which can be very prohibitive in terms of 

cost. Further, such digitizers, though only have a static range of densities that they 

are capable of handling, are used in most medical imaging applications. We, however 

wanted a more cost effective system, aiding in material inspection, which will give the 

same information as their medical counterparts. 

The second objective is a limitation of both, the display systems available and also 

the natural limitation of the human eye. In order to get around this problem would mean 

devising novel display systems and providing the investigator with tools to be able to 

view smaller dynamic ranges of the image and at the same time be able to span through 

the entire range of densities. This has the effect of amplifying a small window to fit 

the entire display range, thereby enabling him to discern more easily the compositional 

variations in the radiograph. 

In order to utilize existing the x-ray imaging system available, we decided to obtain 

radiographs and then digitize them, resulting in a two step process. An 8-bit digitizer 

was used to obtain individual images of the radiographs. We were successful in devising 
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an algorithm that would be able to obtain a single image which contained information 

about the entire range of densities, even if such information was not available in a single 

image to start with. This in effect was like using a very high-end digitizer which had 

close to 16-bits. We also had to design a light box which could be program controlled, as 

it was necessary to change the illumination intensity at various stages of the algorithm. 

The first objective of extracting as much information as possible from the radiograph 

was thus achieved. 

The format for storing such an x-ray Image was the one conventionally followed 

here. It is a simple array of 307200 pixels (derived from 640 x480) with each pixel an 

unsigned short integer (implying that it is a 16 bit quantity). This was to be able to 

store information about image which could theoretically have grayscales ranging from 0 

to 216. This resulted in no loss of information due to the digitization process. 

The system's user interface had the capability of dynamically varying the range of 

densities (or grayscales) of interest, and then displaying the resulting image on the TV 

monitor. The implemented algorithm was inherently to overcome the second bottleneck 

mentioned earlier. 

These techniques worked up to expectations when we digitized radiographs taken 

from typical industrial parts that included aluminum castings. Erstwhile digital images 

had not given information about the presence of flaws which were not detectable due to 

such minute changes in the densities that they were not being represented in the digital 

image. A 12-bit digitizer was also used to see the difference between the quality of image 

available. 12 bits were not sufficient enough to obtain enough information regarding the 

density variations in a single image. 
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Future Work 

A system for obtaining an accurate calibration between the density-grayscale, re­

lationship at a given illumination intensity, was found to be very difficult. Standard 

calibration radiographs obtained from the industry did not have enough density reso­

lution to provide us with enough data points which may result in a better calibration. 

Better standards should be devised which could accurately predict the densities from 

grayscales and vice-versa. 

This is an important step in moving, more from a qualitative inspection technique, 

to providing accurate quantitative information. 

Making this system a real-time system is both the logical next step as well as an 

important stage in creating a wholesome x-ray NDE set-up. This should involve using 

film-less radiography, where the object of obtaining a radiograph and then processing 

it to obtain digital image could be done away with, and instead the digital information 

from the image intensifier forms the basis for further processing. 

Most other image processing techniques which were discussed earlier can be imple­

mented, which might be useful in obtaining and manipulating the digital image data. 



www.manaraa.com

62 

REFERENCES 

[1] R. Halmshaw. Non-Destructive Testing. London, England: Edward Arnold; 1987. 

[2] Elizabeth M. Siwek. Application of the ..-Y-1·ay Measurement Model to Image 
Processing of X-ray Radiographs. M.S. Thesis, Iowa State University; 1994. 

[3] Eastman Kodak Co. Radiography in Modern Industry, 4th ed. Rochester, NY; 1980. 

[4] H. K. Huang. Elements of Digital Radiography, Englewood Cliffs, New Jersey: 
Prentice Hall; 1987. 

[5] Joseph N. Gray and Terence Jensen. Review of Progress in QNDE Conference 
Proceedings, Plenum Press, New York: Vol. 15A, 1996: 441-448. 

[6] Stephen Wong, Loren Zaremba, David Gooden and H. K. Huang. Radiologic Image 
Compression. Proceedings of the IEEE, Vol. 83, No. 2, February, 1995. 

[7] S. C. Lo, R. K. Tiara, N.J. Hankovich and H. K. Huang. Performance 
Characteristics of a Laser Scanner and Laser Printer System for Radiological 
Imaging. Computerised Radiology, Vol. 10, No. 5, 1986: 227-237. 

[8] Technical Manual for DVC Cameras, Manual Number 86-001-01, DVC Company 
San Diego, November 1995. 

[9] Anil K. Jain. Fundamentals of Digital Image P1·ocessing, Englewood CLiffs, New 
Jersey: Prentice Hall; 1989. 


	1997
	Photo-densitometry: radiograph digitization and algorithmic enhancement of x-ray images
	Raghuram Madabushi
	Recommended Citation


	Photo-densitometry: Radiograph digitization and algorithmic enhancement of x-ray images

